

FrontPage
Design Documentation

Matthew Bindewald
Reid Kolaczek
Justin Lukas
Elliott Miller

1

Change History

Version Date Summary Author

0.1 2/22/2018 Initial Draft FrontPage Team

0.2 2/22/2018 Introduction,
Requirements
Update

Elliott Miller

0.3 2/25/2018 Project Description
Update

Matthew Bindewald

0.4 2/25/2018 Competitive Analysis
Update

Justin Lukas

0.5 2/26/2018 Construction of
Diagrams

Reid Kolaczek

1.0 2/28/2018 Draft Changes FrontPage Team

1.1 3/1/2018 Implementation
Details and Further
Information added

FrontPage Team

1.2 4/2/2018 Addition of Activity,
Use Case, and
Sequence Diagrams

FrontPage Team

2

Table of Contents

Change History 2

Introduction 4
Purpose 4
Scope 4
Goals 5
Key Definitions 5

Project Description 5
Project Motivation 5
Product Features 5

Functional Requirements 6

Non-Functional Requirements 6

Competitive Analysis 7
Functional Requirements 7
Non-Functional Requirements 8

UML Diagrams 9
Overview Diagrams 9

General project structure 9
Database structure overview 10

Use Case Diagrams 11
Simple use case scenario 11

Class Diagrams 12
Simplified class overview 12
Trends Class Diagram 13
Trends Lambda Class Diagram 13
Information Lambda Class Diagram 14
Twitter API Class Diagram 15
YouTube API Class Diagram 16
Google News API Class Diagram 17
Middleware Class Diagram 18

Activity Diagrams 18

3

Activity diagram for fetching data from Youtube, Twitter, etc. 18
Activity diagram for allowing the user to set filters 18
Activity diagram for displaying default trends, or filter preferences 19

5. Sequence Diagrams 19
Diagram 19
Diagram 19
Diagram 19

Implementation 19
General Information 19
Data Collection and Storage 20
Data Analysis 20
Website 21

4

Introduction

1. Purpose
FrontPage is a web application that provides a centralized location for users to access trending
news. The application also supports searching for specific topics across a wide variety of social
media platforms and news outlets and condenses the results based on popularity. This
document outlines the requirement specifications for the implementation of FrontPage.
As there is not currently one application that offers trending news from both social media sites
and new sources in such a simplified format, FrontPage aims to become a centralized platform
for users to access top news stories with ease, without having to visit and scroll through multiple
websites and applications to access the most popular posts.

2. Scope
Since sixty-seven percent of adults get their news from social media, and over one quarter of
this demographic get news from one site only, FrontPage offers a unique experience that allows
users to track top news stories from a centralized location (Pew Research Center). Our mission
addresses “reinventing news” and the way that consumers track trending stories.
Front page will pull data from both news networks and social media sites in order to provide the
most integrated, content-rich experience.

3. Goals
FrontPage seeks to be a channel through which users can stay up to date on current news by
accumulating top stories around the United States through the convenience of a single,
user-friendly environment.

4. Key Definitions
API - an application programming interface (API) is a set of subroutine definitions, protocols, and
tools for building application software.

Metadata - a set of data that describes and gives information about other data.

JSON - JSON (JavaScript Object Notation) is a lightweight data-interchange format.

Script - A script or scripting language is a computer language with a series of
commands within a file that is capable of being executed without being compiled.

5

https://en.wiktionary.org/wiki/Protocol

Database - a structured set of data held in a computer, especially one that is accessible in
various ways.

Project Description

1. Project Motivation

The main goal of this project is to provide an overall picture of what the hottest news
trends are across the entire internet. Social media platforms are some of the most common
ways we get news, but every social media platform has different communities and different
types of people who use them, spreading different types of news. We want to create a news
source that gives a more general view, exposing people to news that they might not otherwise
be aware of if they stuck to their normal social networks. Just as important as what FrontPage is
is what FrontPage is not. FrontPage is not a social network, users don’t share stories or interact
with other reads. FrontPage is not biased - it evaluates trends created by the millions of users
that use today’s most common social networks. There are no journalists that choose what
stories are published and what aren’t, it’s all automatic.

2. Product Features

FrontPage is a website. When users load the website they’ll be presented with a list of
the current most popular trends, and stories from various news sources and social media
websites related to those trends. These trends will be updated every few minutes so that users
will always have the latest news. Each trend is determined by analyzing the most popular posts
from various media sites such as YouTube, Twitter, Google News, and Reddit. Once the trends
are determined, we reach out to those individual sites and grab stories related to each trend.
For example, if a new Tesla car was just announced, it may appear on our FrontPage. The
display of the trend may display popular tweets about the announcement, a news article about
it, or maybe a YouTube video of someone test driving the car. Our website will only initially
display the top 5 or 10 trends, but users will be able to search for other trends by utilizing the
search bar on our site.

Functional Requirements
1. The application will determine most popular news stories and articles to display to the

user
2. The application will allow users to search for specific topics and display resulting posts

from various media platforms
3. The application will filter news stories and articles based on the user’s preferences
4. The application will provide a summary of each post for users to view

6

5. The application will pull data from multiple news and social media sources through the
use of APIs

Non-Functional Requirements
1. Trending news will be determined by pulling data from various social media platforms

and identifying the most prevalent topics
2. Top stories will be updated in semi-real time based on a predefined refresh delay, no

longer than five minutes
3. Clicking on a post will redirect users to the appropriate source
4. The application will list metadata regarding the popularity of each post, including how

many views or reposts
5. Addition of searching by keyword and filtering out by keyword as well as select location

and language.

Competitive Analysis

Functional Requirements

Application The application will
determine most popular
news stories and articles to
display to the user

The application will allow
users to search for specific
topics and display resulting
posts from various media
platforms

The application will provide a
summary of each post for
users to view

FrontPage full full full

Google News full full full

Apple News full full full

Reddit full full full

Twitter partial full partial

flipboard full full full

Most functional requirements are currently being met by all competitive applications. That is to
be expected since our application is designed to build off the design of many competitive
applications. There is already a large group of applications designed to provide news as well as
serve as social media platforms currently in the market. They vary with UI, origins of content,
and user interaction. However, most of the premise is similar to the purpose of FrontPage.

7

However, most of what sets our application apart as compared to the others in the marketplace
comes from the non-functional requirements.

Non-Functional Requirements

Application Trending news will be
determined by pulling data
from various social media
platforms and identifying
the most prevalent topics

Top stories will
be updated in
semi-real time
based on a
predefined
refresh delay, no
longer than five
minutes

Clicking on a
post will redirect
users to the
appropriate
source

The application will list
metadata regarding
the popularity of each
post, including how
many views or reposts

FrontPage full full full full

Google News partial partial full No coverage

Apple News partial partial full No coverage

Reddit No coverage partial partial partial

Twitter No coverage partial partial partial

flipboard partial partial partial No coverage

Where FrontPage differentiates itself from the competition comes from non-functional
requirements of the application. As the table shows, there is not any applications currently in the
market that can provide all the features that FrontPage would be able to provide. Most notably,
applications are separated into two main categories, applications that allow users to post
content, and applications that are geared towards publishing news stories without user
interaction. FrontPage falls into the latter, but with a competitive advantage because it takes the
most popular posts from many different platforms and combines them in one place. Google and
Apple News have relatively similar means of operating, however their posts come from news
focused articles, can also have sponsored stories, and are not cross platform. FrontPage is able
to differentiate itself from the competition by combining posts from major social media and news
platforms. Unlike Facebook, Twitter, YouTube, and others that only have posts from users on
their networks, our application is able to combine the top posts from many platforms in one
location.

8

UML Diagrams

1. Overview Diagrams

a. General project structure
This diagram depicts the comprehensive architecture of our project. Each step is indicated by a
number and explanation for how and when the different actions are taken. The general behavior
is as follow: Top trends are retrieved from Twitter by Trends Lambda, stored in the Trends
Database, then pulled by the Information Lambda and used to identify which posts from each
media source should be stored in the Information Database. Those posts are then updated in
almost real time (every 10 minutes) to be pulled by the middleware and displayed to the user.

9

b. Database structure overview
This diagram reiterates the process explained in the previous diagram and gives a better
visualization of the interactions between the databases.

10

2. Use Case Diagrams

a. Simple use case scenario
The use case for front page is fairly simple. We will have two main views, one where a user can
view the trending news story, and the other one will allow the user to filter the trending news.
Finally, there will be an option to save these filters to the user’s account. Some example filters
would be narrowing results by source, time it was posted, media type (video, photo, text), and
category.

11

3. Class Diagrams

a. Simplified class overview
At a high level, our system design attempts to follow the principle of high cohesion and low
coupling. Separating everything into modules, as well as utilizing inheritance where necessary,
our design will be modular and adaptable to new requirements. The three main classes each
handle a part of the application. First we will store the data in the database where it can be
retrieved from the displaydata class. Furthermore, we will also utilize the storedata class to
handle storing user settings in the database. This class needs to be as abstract as possible to
allow for multiple types of data to be stored in the database.

12

b. Trends Class Diagram
This is the diagram depicting the class on which our project is based. The trends class is how
we will store both the top trending topics initially retrieved from Twitter as well as the posts
pulled from various platforms and their associated metadata.

c. Trends Lambda Class Diagram
The trends lambda class describes lambda that is triggered every 10 minutes to pull trending
topics from Twitter in order to establish the topics that will determine the posts pulled from other
sources.

13

d. Information Lambda Class Diagram
The information lambda executes every time the trends database is updated with the top trends
by the trends lambda. This class uses the trend class object to pull top posts from Twitter,
Youtube, and Google News containing the trend “keywords” and stores them in the information
database, to be accessed for later use.

14

e. Twitter API Class Diagram
This class serves two purposes: the first is to pull current trending topics from Twitter using the
Twitter API every 10 minutes (handled by the trends lambda), and the second is to then retrieve
the top tweets for each of these topics (prompted by information lambda).

15

f. YouTube API Class Diagram
This class uses YouTube API’s to pull the most popular videos on YouTube for each of the
trending topics.

16

g. Google News API Class Diagram
This class manages retrieving the top posts from Google News using Google News API for each
trending topic.

17

h. Middleware Class Diagram
This class handles the communication between the front end of the application and the
database in which the already retrieved posts are stored. When a user opens Frontpage, the
middleware class will pull media from the information database and send them to be displayed
within the application.

4. Activity Diagrams

a. Activity diagram for fetching data from Youtube, Twitter, etc.
In order to find the trending news, our team will utilize the APIs from various sources. If we are
successful in gathering the data, we will store it, otherwise retry the call and log the error. In

18

order to achieve the ability to filter by the date it was trending, links to this data will be stored in
the database. If a user wants to see trends from previous days, this will allow for that.

b. Activity diagram for allowing the user to set filters
While some users will be fine with seeing the global trends, other users may want to filter it
down to a specific topic, time, or other parameter. This activity diagram will allow the user to set
these filters, and handle any errors that may occur. These filters will persist between sessions,
so on success of saving the filters, they will be stored in the database.

c. Activity diagram for displaying default trends, or filter preferences
If a user does not have any filters saved, the application will default to showing the trending
news with no filters applied. However, if the user does have filters saved in the database, the
application will default to showing the user a filtered view along with a notification that filtering is
currently enabled.

19

5. Sequence Diagrams

a. Trends Lambda Sequence Diagram
This sequence diagram demonstrates the behavior of the Trends Lambda class, triggered every
10 minutes, which is to pull the trending topics from Twitter to be stored as Trend objects in the
Trends DB.

20

b. Information Lambda Sequence Diagram
When the Trends DB is updated, the Information Lambda class retrieves the Trends stored in it
and pulls top tweets, videos, and posts from each platform based on these popular trends,
storing them as Trend objects in the Information DB.

c. Middleware Sequence Diagram
This diagram illustrates how the middleware class retrieves the top posts stored in the
Information DB to be displayed to the user on the Frontpage application.

21

Implementation

1. General Information
We plan on hosting a lot of our services on Amazon Web Services. AWS provides many
useful tools for accessing some of the APIs we’re using (such as collecting data from
Twitter streams). AWS is also really easy to work with when you have multiple people on
a team, as anyone on our team will be able to easily remote in to any of the servers and
databases once they’re set up.

2. Data Collection and Storage
Because we’ll be pulling data from multiple APIs we need to find a solution that allows us
to easily get data and store it in a format where we can do near real time analysis. We
currently plan on updating our data every 10 minutes. One thing that we agreed upon is
that in the module for each API we would preprocess the data into a universal format, so
no matter whether the initial data was from Reddit or Twitter it’d end up stored in the
same format in the same database to reduce the complexity of our data analysis. Below
are some of the APIs we plan on accessing and some considerations for how we will
transform the data.

Reddit: The information we’ll pull from Reddit will be the top 100 posts from the /r/news
subreddit. We’ll take the titles of these posts and store them in the database to be
analyzed. We’ll use an AWS EC2 instance to host the script that does this.

Twitter: Twitter is probably the most challenging API for us. We’re currently planning on
accessing the Twitter streaming API to get a constant load of tweets. We’ll use an AWS
Kinesis stream to access this API. We’ll collect tweets constantly for 10 minutes and
then take that data, find keywords in those tweets, and stick those keywords in the
database for analysis. While we’re collecting the tweets to be batch processed we’ll stick
all of the tweet contents into AWS DynamoDB. We’re choosing DynamoDB because it
can handle the high bandwidth that we’ll need with all of the incoming tweets.

YouTube: YouTube has well-documented API that has been very useful for us in the
implementation of our project. We will use the YouTube API to pull the “Most Popular”
chart which lists the current trending videos on YouTube. From there we can access
video metadata such as view count, ratings, tags, and more. YouTube also provides a
search API, that we will use for the situation when users search particular top news
stories.

22

3. Data Analysis
Once trending posts have been pulled, their metadata must be analyzed to decide the
ranking for trend analysis. The user base for certain applications could improperly skew
the trends, i.e. a Facebook post could be more popular than a tweet, but since Facebook
has a larger user base, they must be weighted differently to determine which post is
garnering more total views. Our application cannot update in real-time since we will be
monitoring trends, a post cannot be trending until a certain amount of time has passed in
order to analyze trend level accurately. Therefore we will be constantly pulling data,
populating a database, and analyzing the metadata of posts to actively monitor the
popularity of posts to ensure our application only updates with trending data.

Every 10 minutes we’ll analyze the data put in the collection database from the data
collection phase. Once the data is analyzed and our top trends are found we’ll put those
trends into a database along with social media posts about those trends that we will
query the APIs we’re using once again to get.

4. Website
Our frontend should be simple. Our web page will display the top 10 or so trends from
our trending database. Each post will have the title of the trend along with several stories
from YouTube, Twitter, etc. embedded in it. Users will be able to click on these stories to
view them on the original websites if they so choose. At the top of the web page there
will be a search bar. Users can enter the name of a trend and if the same trend is found
in our trending database we’ll display just those trends.

23

